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Abstract. A generalized strangeness-including statistical bootstrap model (SSBM) is constructed so as to
include independent fugacities for up and down quarks. Such an extension is crucial for the confrontation
of multiparticle data emerging from heavy ion collisions, wherein isospin symmetry is not satisfied. Two
constraints, in addition to the presence of a critical surface which sets the boundaries of the hadronic
world, enter the extended model. An analysis pertaining to produced particle multiplicities and ratios is
performed for the S + Ag interaction at 200 GeV/nucleon. The resulting evaluation, concerning the location
of the source of the produced system, is slightly in favor of the source being outside the hadronic domain.

1 Introduction

Multiparticle production in high energy collisions is a sub-
ject of intense research interest, whose history goes almost
as far back as that of the strong interaction itself. Indeed,
it registers as one of the key features entering the analysis
of collision processes, involving the strong force, at both
the experimental and the theoretical fronts. With specific
reference to relativistic heavy ion collisions, the task of
accounting for the produced multiparticle system is by far
the most important issue to consider for extracting infor-
mation of physical interest.

A notably successful theoretical approach, through
which experimentally observed particle multiplicities have
been confronted, is based on the idea of thermalization.
Within such a context, one views the multiparticle sys-
tem, emerging from a given high energy collision, as being
comprised of a large enough number of particles to be de-
scribable in terms of a thermodynamical set of variables.
Relevant, standard treatments appearing in the literature
[1–5] adopt an “ideal hadron gas” (IHG) scheme, wherein
any notion of interaction is totally absent1.

The fact that such analyses, ranging from e+e− to
A + A collisions, produce very satisfactory results simply
verifies, a posteriori, that the thermalization assumption
is justifiable. Beyond this realization, however, no funda-
mental insight and/or information is gained with respect
to the dynamics operating during the process, which pro-
duced the multiparticle system in the first place. Given,
in particular, that the object of true interest, in the case
of relativistic heavy ion collisions, is whether the original
thermal source of the multiparticle system is traceable to
a region that belongs, or does not belong, to the hadronic

1 Only the repulsive form of interaction has been introduced
in some cases through a hard sphere model.

phase, an IHG-type of analysis renders itself totally in-
adequate. Clearly, only if interactions are taken into con-
sideration does it become relevant to ask whether or not
a change of phase has taken place during the dynamical
development of the system.

In a recent series of papers [6–8], we have pursued a
line of investigation which, on the one hand, approaches
the study of multiparticle systems from the hadronic side
(just as the IHG case) while, on the other hand, it incor-
porates the effects of interactions in a self-consistent way.
We are referring to the employment of a scheme, known
as the statistical bootstrap model (SBM), which was orig-
inally introduced by Hagedorn [9–11], much before QCD
was conceived and was subsequently developed via notable
contributions by a number of authors. Excellent reviews
articles on the SBM can be found in [12].

The crucial feature of the SBM is that it adopts a
statistical–thermodynamical mode of description, which
admits interactions among its relativistic constituent par-
ticles via a bootstrap logic. According to the SBM, the
constitution of the system is viewed at different levels of
organization (fireballs) with each given level being gen-
erated as a result of interactions operating at the pre-
ceeding one. The remarkable feature of the SBM is that
the so-called bootstrap equation (BE), which results from
the aforementioned reasoning, defines a critical surface in
the space of the thermodynamical variables which sets an
upper bound to the world of hadrons and implies, under
precisely specified conditions, the existence of a new phase
of matter beyond it.

Let us briefly review this construction while giving,
at the same time, an overview account of the bootstrap
scheme itself. We start by displaying the generic bootstrap
equation, whose final form reads

ϕ(T, {λ}) = 2G(T, {λ}) − exp[G(T, {λ})] + 1, (1)
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where ϕ is the so-called input function, since its specifica-
tion involves an input from all observable hadrons, and G
incorporates, via the bootstrap logic, the mass spectrum
of the system given in terms of fireballs of increasing com-
plexity. Note that ϕ and G as functions depend on a ther-
modynamic set of variables (temperature and fugacities).

The key feature of the BE is that it exhibits a square
root branch point at

ϕ(T, {λ}) = ln 4 − 1, (2)

which defines a critical surface in the space of thermo-
dynamical variables that sets the limits of the hadronic
phase, in the sense that (1) does not posses physically
meaningful solutions beyond this surface. This is not to
say that the BE is thermodynamically consistent with the
existence of a different phase on the other side. In this
connection, the deciding factor is the form of the so-called
spectrum function τ(m2) entering the definition of G and,
in particular, the way it factorizes into a kinematical and
a dynamical part (see the following section).

The final ingredient of the SBM is the employment of
a grand canonical partition function Z(V, T, {λ}), which
accounts for the thermodynamical properties. In combi-
nation with the BE, it furnishes a thermal description of a
system comprised of relativistic entities (hadrons/fireballs)
interacting with each other.

Recognizing the importance of the role played by the
quantum number of strangeness in providing possible sig-
nals for a presumed QGP phase, we have extended the
SBM by introducing a fugacity variable for strangeness
into the scheme [6,7]2. We shall be referring to the result-
ing extended construction as the “SSBM”.

Imposing the condition 〈S〉 = 0 we proceeded to study
thermodynamical properties of the SSBM. Central empha-
sis was placed on the choice of the spectrum function, in
order to acheive an acceptable thermodynamical descrip-
tion, consistent with the existence of a phase beyond the
hadronic one. The end result is encoded by the following
relation expressing the partition function in terms of the
“bootstrap function” G [6,7]

lnZ(V, T, {λ}) =
V T 3

4π3H0

∫ T

0

1
y5 G(y, {λ})dy, (3)

where H0 ≡ (2/(2π)34B) with B the MIT bag constant.
In combination with the critical surface condition fur-

nished by the BE, one is able to relate the critical tem-
perature T0 at vanishing chemical potential with B. This
occurrence provides a direct connection between QCD-
inspired phenomenology and critical temperature for the
hadronic state of matter. Our numerical studies have been
based on the choice T0 = 183 MeV, which corresponds to
the maximum acceptable value for B1/4, namely 235 MeV.
Such a choice is consistent with the strangeness chemical
potential µs remaining positive definite throughout the
hadronic phase while maximally extending the region of

2 The latter was not included in the original SBM as the
main preoccupation at the time referred to nuclear matter.

the hadronic phase and thereby rendering our appraisal of
the proximity of the source of the multiparticle system to
the critical surface (or beyond) as conservative as possible.

Subsequently, we generalized the SSBM [8] by intro-
ducing a further “fugacity” variable γs, which allows for
partial strangeness chemical equilibrium. This extension
of the model enables us to confront the data with an
open perspective on strange particle production, as we let
the observed particle multiplicities and ratios determine
whether strangeness saturation has taken place or not.

In [8] we also conducted a systematic study of multi-
particle states (particle multiplicities and particle ratios)
produced in S + S as well as in p + p̄ collisions at CERN
(experiments NA35 and UA5, respectively), the latter con-
sidered more as a test case. Our results yield an excel-
lent account of particle multiplicities and ratios (equally
good, if not slightly better than IHG results [5,14,15]).
More importantly, we have identified a region in the space
of thermodynamical parameters where the source of the
produced multiparticle state is expected to lie and ap-
praised its location with respect to the limiting surface of
the hadronic phase.

For the S + S interaction we summarize the highlights
of our findings as follows:

(a) The quality of our results were similar to that given by
IHG analysis. This further justifies the thermalization
hypothesis.

(b) Almost full saturation of strangeness was observed,
which accounts for an enhanced production of strange
particles relative to non-strange ones.

(c) The source of the multiparticle system was found to
lie just outside the limits of the hadronic phase, as
established by the SSBM.

(d) An excess of pions (SSBM/experimental = 0.73) is ob-
served, which is not fully compatible with the theoret-
ical prediction of a purely hadronic phase. At the same
time, entropy considerations also give SSBM/QGP =
0.71–0.78, pointing, together with (c), to a source be-
ing in the doorway of a deconfined phase.

These findings strongly suggest that in the S + S inter-
action at 200 GeV/nucleon the thermalized, strangeness-
saturated source of the multiparticle system has exceeded
the hadronic sector and has entered the lower limits of the
QGP phase.

Now, the S + S colliding system is symmetric under
isospin transformations, hence consistent with the simpli-
fication λu = λd adopted in our previous work on the
SSBM. In the present paper we shall further extend the
model so as to accommodate isospin non-symmetric sys-
tems. Such a step will enable us to confront multiparti-
cle data for the S + Ag collision experiment (NA35), at
CERN. As we shall see, this further extension imposes a
new constraint on the system which relates charge and
baryon numbers. It follows that the SSBM extension we
shall be discussing amounts, at the hadronic level, to in-
troducing a fugacity variable pertaining to total charge.

The presentation of the new extension of the SSBM,
accommodating isospin non-symmetric systems, will be
accomplished in Sect. 2. The profile of the relevant con-



A.S. Kapoyannis et al.: Statistical bootstrap analysis of S + Ag interaction at 200 AGeV 301

struction, accentuated by the presence of the critical sur-
face in the space of thermodynamical parameters as well
as the two surfaces resulting by the imposition of the two
physical constraints, will be discussed.

Our confrontation of the data (particle multiplicities
and ratios) for the S + Ag experiment (NA35 at CERN)
is presented in Sect. 3. Our concluding remarks are made
in Sect. 4. Two appendices are devoted to corresponding
discussion of a more specialized nature. In Appendix A
we establish that the value for the critical temperature
for zero chemical potentials corresponds to a maximum
on the critical surface. Appendix B discusses the sub-
tle points involved in the minimization of the χ2-variable
given the presence of constraints and the critical surface
beyond which the SSBM has no analytical validity.

2 Isospin non-symmetric SSBM

In this section we shall realize the construction of a maxi-
mally extended SSBM, accommodating both partial
strangeness saturation and isospin asymmetry. In this way
we shall be in position to perform thermal analyses per-
taining to (non-) strange particle production in nucleus–
nucleus collisions in which the total number of participat-
ing protons differs from that of neutrons.

2.1 Preliminaries

The set of variables in terms of which the initial quantifica-
tion of the bootstrap scheme is accomplished naturally as-
sociates itself with input particle (and fireball) attributes.
These are number densities and four-momenta pertaining
to the particle/fireball species. As hinted to in the Intro-
duction the situation we wish to consider in this paper
involves the following number densities: baryon number b,
net strangeness s, overall strangeness |s| and “net charge”
q. The employed sequence respects the “historical” order
in the following sense. In the original SBM only b enters,
the SSBM construction of [6,7] includes s (= strangeness
minus anti-strangeness number) while the extension of [8]
has added |s| (= strangeness plus anti-strangeness num-
ber) to the list.

Our present effort amounts to a further extension of
the SSBM through which we incorporate a “net charge”
number density into the bootstrap scheme. To quantify
our considerations regarding this new variable let us focus
on the initial states entering a nucleus–nucleus collision
process and consider the ratio N in

p /N in
n , where N in

p (N in
n )

denotes the total number of protons (neutrons) participat-
ing in the collision. Suppose this ratio is equal to unity. It
then follows that

N in
p

N in
n

=
〈Q〉in

〈B〉in − 〈Q〉in = 1, (4)

where 〈Q〉in and 〈B〉in are the incoming total charge and
baryon numbers, respectively. Equivalently, the above con-
dition reads

〈B〉 = 2〈Q〉. (5)

By introducing a “net charge” particle density into the
bootstrap scheme we declare our intention to confront A+
A collision processes which do not, a priori, respect the
condition given by (5). It is not hard to see that the latter
corresponds to an isospin non-symmetric system, at least
as far as its initial (incoming) composition is concerned.

With reference to (5) the quantification of isospin
asymmetry can be parametrized as follows:

〈B〉 = β2〈Q〉, (6)

where

β =
N in

p + N in
n

2N in
p

. (7)

Our actual preoccupation, of course, is with the descrip-
tion of the produced, final states. Accordingly, we shall
eventually impose (6) as a constraint on the system.

We close this general exposition with a brief discussion
of the particular version of the SSBM we have adopted
throughout our work as far as the issue of dynamics versus
kinematics is concerned. Generically speaking, the SSBM
construction involves a mass spectrum function τ whose
dependence is on the set of variables {p2, b, s, |s|, q}. A
kinematic factor B̃(p2) enters the equation (see the BE in
the following subsection), the specific choice of which clas-
sifies different versions of bootstrap models, according to
asymptotic behavior, as the fireball mass goes to infinity.
Our specific commitment to the form B̃(p2) has been dis-
cussed at great length in [6,7]. We have argued that there
are decisive physical advantages in favor of the choice

B̃(p2) = B(p2) =
2V µpµ

(2π)3
, (8)

where V µ is the (boosted) four-volume associated with
a given particle/fireball and pµ the corresponding four-
momentum. The two four-vectors being parallel to each
other imply a relation of the form

Vµ =
V

m
pµ, (9)

V being the rest frame volume. We therefore have

B(p2) → B(m2) =
2V m

(2π)3
. (10)

The mass spectrum acquires the asymptotic form

τ̃(m2, {λ}) m→∞−→ C ′({λ})m−1−α exp[m/T ∗({λ})]. (11)

The above relations determine the version (α = 4) of
the bootstrap model we have found to be physically rele-
vant. It should be pointed out that the bulk of the work
surrounding the bootstrap model, prior to the introduc-
tion of strangeness, was based on the choice α = 2 [13].

2.2 Construction of the model

The initial form of the BE reads

B̃(p2)τ̃(p2, b, q, s, |s|) = gbqs|s|B̃(p2)δ0(p2 − m2
bqs|s|)︸ ︷︷ ︸

input term
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+
∞∑

n=2

1
n!

∫
δ4

(
p −

n∑
i=1

pi

)
·
∑
bi

δK

(
b −

n∑
i=1

bi

)

×
∑
bi

δK

(
q −

n∑
i=1

qi

)∑
si

δK

(
s −

n∑
i=1

si

)

×
∑
|s|i

δK

(
|s| −

n∑
i=1

|s|i
)

×
n∏

i=1

B̃(p2
i )τ̃(p2

i , bi, qi, si, |s|i)d4pi. (12)

The new feature, with respect to our previous extensions
of the bootstrap model, is the introduction of electric
charge Q as an additional variable3.

Performing five Laplace transforms (one continuous
and four discrete) leads to the following replacement of
variables:

(p2, b, s, |s|, q) → (T, λB , λS , λ|S|, λQ), (13)

where the λ’s represent fugacity variables corresponding
to the number densities, and T is the temperature, as
recorded in the center of mass frame.

As the final states are composed of hadrons, rather
than just baryons, we find it more convenient to pass from
the original set of fugacities into one given in terms of va-
lence quark fugacities. The transcription is made accord-
ing to the relations

λB = λuλ2
d, λQ = λuλ−1

d ,

λ|S| = γs, λS = λdλ
−1
s . (14)

The important implication of the above relations is that
they facilitate a thermodynamical description of the sys-
tem in terms of (valence) quark fugacities, thereby en-
abling us to accommodate the presence of any kind of
hadronic particle in the final system. Specifically, the form
of the functions ϕ and G entering the bootstrap scheme
is given by

ϕ(T, λu, λd, λs, γs;H0)

= 2πH0T
∑
a

λa(λu, λd, λs, γs)

×
∑

i

gaim
3
aiK1

(mai

T

)
(15)

and

G(T, λu, λd, λs, γs;H0) = 2πH0T

×
∫ ∞

0
m3τ0(m2, λu, λd, λs, γs)K1(m/T )dm2, (16)

where K1 denotes the modified Bessel function of the sec-
ond kind and where the general form of the fugacities λa
pertaining to the totality of hadronic families is

λa({λ}) = λnu−nū
u λ

nd−nd̄

d λns−ns̄
s γns+ns̄

s , (17)
3 In our thermodynamical context the electric charge will

enter as charge number density q.
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Fig. 1. Projections on the (µu, T )-plane of intersections
of constant µd and constant µs of the critical surface
ϕ(T, µu, µd, µs, γs) = ln 4 − 1 for T0 = 183 MeV at γs = 1

where ni is the number of the i quarks contained in the
hadron of the a family. For the particular case of the fu-
gacities of light unflavored mesons, one can employ the
parametrizacion c1(uū + dd̄) + c2ss̄, with c1 + c2 = 1 [8],
whereupon the corresponding variables assume the form

λa({λ}) = c1 + c2γ
2
s . (18)

The bootstrap equation (1), written analytically for
the case at hand, reads

ϕ(T, λu, λd, λs, γs) = 2G(T, λu, λd, λs, γs)
− exp[G(T, λu, λd, λs, γs)] + 1,(19)

while the critical surface is determined by (either one of)
the relations

ϕ(Tcr, µu cr, µd cr, µs cr, γs cr;H0) = ln 4 − 1, (20)

and
G(Tcr, µu cr, µd cr, µs cr, γs cr;H0) = ln 2. (21)

Clearly, the critical surface corresponds to a four-
dimensional surface immersed in the space of the five ther-
modynamical variables.

The constant parameter H0, related directly to the
MIT bag constant (see remark following (3) and [6,7]),
can also be linked to the critical temperature at vanishing
chemical potentials by

ϕ(T0, µu = 0, µd = 0, µs = 0, γs;H0) = ln 4 − 1. (22)
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Fig. 2. Projections on the (µd, µu)-plane of intersections
of constant T and constant µs of the critical surface
ϕ(T, µu, µd, µs, γs) = ln 4 − 1 for T0 = 183 MeV at γs = 1

Through this relation H0 can be directly related to T0,
for a fixed value of the “fugacity” γs. At the same time
we demonstrate, in Appendix A, that T0 corresponds to
the maximum value for the temperature on the critical
surface, irrespective of the value γs. In our previous work
this feature was simply assumed.

In order to acquire a concrete sense concerning the
profile of the critical surface we have conducted a number
of numerical studies which are displayed in Figs. 1–3. In
these figures we present various sections of the critical
surface, having chosen H0 such that T0 = 183 MeV for
γs = 1.

Figure 1 depicts projections of the critical surface on
the (µu, T )-plane for three representative values of µd and
three for µs. One observes that the critical surface
“shrinks” (equivalently, “narrows”) as µs reaches higher
positive values, starting from zero. This “shrinkage” is
more pronounced in the vicinity of vanishing µu.

Figure 2 displays critical surface projections on the
(µu, µd)-plane for three different values of T and µs. One
notices that the projections are (approximately) symmet-
ric with respect to the line µu = µd. A second point is
that the lowering of µs causes an expansion of the region
occupied by the hadronic phase in the (µu, µd)-plane.

Finally, Fig. 3 shows projections on the (T, µs)-plane
of the critical surface for fixed values of µu and of µd. We
notice that for fixed µd and µs the critical temperature
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ϕ(T, µu, µd, µs, γs) = ln 4 − 1 for T0 = 183 MeV at γs = 1

falls with increasing (absolute) values of µu. The same
holds true under the exchange µu ↔ µd.

2.3 Imposition of constraints

Given the constitution of the initial colliding states, we
must impose the constraints 〈S〉 = 0 and 〈B〉−β2〈Q〉 = 0
on the system as a whole. To this end we must refer to the
partition function for our chosen version of the bootstrap
scheme, as given by (3). The constraints have the generic
form

Hk(T, {λ}) ≡
∫ T

0

1
y5

Fk(y, {λ})
2 − exp[G(y, {λ})]

dy

= 0, k = 1, 2, (23)

with

F1(y, {λ}) = λs
∂ϕ(y, {λ})

∂λs
(24)

for the imposition of 〈S〉 = 0 and

F2(y, {λ}) =
1 − 4β

3
λu

∂ϕ(y, {λ})
∂λu

+
1 + 2β

3
λd

∂ϕ(y, {λ})
∂λd

(25)
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for securing the constraint 〈B〉 − β2〈Q〉 = 0.
These conditions constitute a system of two equations

whose solution yields a three-dimensional hypersurface in
the space of thermodynamical variables on which the given
system is constrained to exist. Let us denote this surface
by Hph, where “ph” stands for “physical”. Clearly, the in-
tersection between Hph and the critical surface defines the
limits of the hadronic world for the system with the given
constraints. This intersection comprises a two-dimensional
surface whose numerical study is presented in Figs. 6–8.

Figures 4 and 5 give corresponding perspectives of the
profile of Hph whose basic aim is to display its variation
with β. We have considered the cases β = 1 (N in

p = N in
n ),

β = 2 (N in
p < N in

n ) and β = 1/2 (N in
p > N in

n )4. Fig-
ure 4 depicts projections of Hph in the (T, µs)-plane for
fixed values of λu and γs, while Fig. 5 shows correspond-
ing projections in the (µu, µd)-plane. From the first figure
we record the tendency of µs to increase with β, for fixed
values of (T, λu, γs). From the second we witness the (ex-
pected) behavior µu = µd for β = 1, µu < µd for β > 1
and µd < µu for β < 1.

Finally, in Figs. 6–8 we present the results of numerical
studies pertaining to the intersection between Hph and the
critical surface. In Fig. 6 the two-dimensional intersection
is projected on the (µu, T )-plane, for our three represen-
tative values of β. As one might expect, an increase of β
induces a decrease of µu cr for constant temperature. Fig-

4 For purposes of comparison we have also drawn correspond-
ing projections for the IHG model.

(% )% *% +% ,% -%

j"fjVg` 8]Zb^XVa EdiZci^Va! � �BZK�

(%

)%

*%

+%

,%

-%

.%

&%%

Y
"f
j
V
g`

8
]
Z
b
^X
V
a
E
d
iZ
c
i^
V
a!
�

�B
Z
K
�

}2'
}2&
}2%#*

� 2&
� $I2%#)

>=<HH7B

>=<

HH7B

>=<

HH7B

j
Y h

j

Fig. 5. Projections on the (µu, µd)-plane of intersections, at
fixed λu (µu/T = 0.4), of the 〈S〉 = 0 and 〈B〉 = 2β〈Q〉
surfaces for the SSBM and the IHG, for different values of β.
For the SSBM case T0 is set at 183 MeV

% *% &%% &*% '%% '*% (%% (*%

j"fjVg` 8g^i^XVa 8]Zb^XVa EdiZci^Va! � �BZK�

+%

-%

&%%

&'%

&)%

&+%

&-%

8
g^
i^
X
V
a
I
Z
b
e
Z
gV
ij
gZ
!
I
X
g
�B

Z
K
�

}2'
}2&
}2%#*

HH7B
Id2&-( BZK

� 2&h

j Xg

Fig. 6. Projections on the (T, µu)-plane of the intersection of
the 〈S〉 = 0 and 〈B〉 = 2β〈Q〉 surfaces for the SSBM with the
critical surface for different values of β. T0 is set at 183 MeV



A.S. Kapoyannis et al.: Statistical bootstrap analysis of S + Ag interaction at 200 AGeV 305

% *% &%% &*% '%% '*% (%% (*%

j"fjVg` 8g^i^XVa 8]Zb^XVa EdiZci^Va! � �BZK�

*%

&%%

&*%

'%%

'*%

(%%

(*%

Y
"f
j
V
g`

8
g^
i^
X
V
a
8
]
Z
b
^X
V
a
E
d
iZ
c
i^
V
a!
�

�B
Z
K
�

}2'
}2&
}2%#*

HH7B

Id2&-( BZK
� 2&h

Y
X
g

j Xg

Fig. 7. Projections on the (µu, µd)-plane of the intersection of
the 〈S〉 = 0 and 〈B〉 = 2β〈Q〉 surfaces for the SSBM with the
critical surface for different values of β. T0 is set at 183 MeV

ure 7 shows the corresponding projections on the (µu, µd)-
plane exhibiting similar connections between β-values and
the relation among µu cr and µd cr. In Fig. 8 we consider
projections in the (µu, µs)-plane. Here we surmise that for
fixed values of µu cr an upward move of β with respect to 1
(N in

p < N in
n ) induces an increase in the (critical) chemical

potential of the strange quark.
This concludes our discussion of the isospin non-

symmetric SSBM. We shall proceed, in the next section,
to confront experimental data encoded in the multiparti-
cle system produced in A + A collisions, in which we do
not have isospin symmetry.

3 Analysis of S + Ag data of NA35

In this section we shall perform a data analysis referring
to particle multiplicities recorded in the NA35 S + Ag ex-
periment at 200 GeV/nucleon at CERN. The method we
shall use is similar to the one presented in [8]. The main
differences are that our space is described by the set of the
six thermodynamical variables (V T 3/4π3, T, {λ}), i.e. one
more variable is present and that the system is subject to
two constaints, namely 〈S〉 = 0 and 〈B〉 = 2β〈Q〉, instead
of one. The latter will be enforced via the introduction of
corresponding Lagrange multipliers.
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The theoretical values of the thermodynamical param-
eters are adjusted via a χ2-fit by minimizing the function

χ2(V T 3/4π3, T, {λ}, {l})

=
N∑

i=1

[
N exp

i − N theory
i (V T 3/4π3, T, {λ})

σi

]2

+
2∑

k=1

lkHk(T, {λ}), (26)

where lk are the Lagrange multipliers accompanying the
corresponding constraints as given by (23) and the N theory

i
are given by

N theory
i = (27)(
λi

∂ lnZ(V T 3/4π3, T, {λ}, . . . , λi, . . .)
∂λi

)∣∣∣∣
...=λi=...=1

.

The minimization of χ2 ammounts to solving the fol-
lowing system of eight equations:

∂χ2(x1, . . . , x8)
∂xi

= 0 (i = 1, . . . , 8), (28)

with {xi} = (V T 3/4π3, T, {λ}, {l}).
An outline of the procedure involved in realizing a nu-

merical solution of the minimization problem has been
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given in [8]. There we have also discussed the methodology
by which we determine correction factors for
Bose/Fermi statistics. We shall not repeat the general ar-
gumentation here; nevertheless we do present in Appendix
B a discussion of some technical aspects involved in the
relevant procedure for the case at hand.

Turning our attention to the S + Ag collision at an
energy of 200 GeV/nucleon, using the methodology that
has just been described, we set as our first task to specify
the value of the β-parameter appropriate for the process
under study. As far as the 32S nucleus is concerned, the
single isotope with nucleon number 32 (Z = 16) is em-
ployed, whereas for silver there are two stable isotopes
with nucleon numbers 107 and 109 (Z = 47) entering,
respectively, a mixture composed of 51.84% and 48.16%
fractions. This accounts for an average nucleon number of
107.96. It turns out that it makes little difference whether
one assumes that all the nucleons entering the S + Ag sys-
tem participate in the collision process, or that the “ac-
tive” part of the Ag nucleus is determined by some “real-
istically” assumed geometrical configuration. For our nu-
merical applications we shall fix the value of β at 1.10.
The emerging results are displayed in a series of tables
and figures.

In Table 1 we present adjusted sets of values for the
thermodynamical parameters with a corresponding esti-
mation for χ2/dof5. The numbers presented correspond
to evaluations where all particle multiplicities are taken
into account (first row) and where, in turn, one of the
particle species is excepted. One notices a decive improve-
ment when h− (mostly pions) are excluded from the fit.
This occurrence makes meaningful the separate treatment
of the full multiplicity analysis from the one(s) where pi-
ons are excluded.

The experimental data pertaining to particle multi-
plicities have been taken from [16–20,14,5] and are en-
tered in the first column of Table 2. The second column
gives the theoretical estimates of populations based on the
corresponding adjusted set of thermodynamical parame-
ters with all particle species included. The third column
pertains to the adjusted set with the absence of pions.
The last column corresponds to the same situation but
with the critical surface pushed slightly outward by set-
ting T0 = 183.5 MeV at γs = 1.

Table 3 exhibits the correction factors due to Bose/
Fermi statistics for each particle species. We have covered
each of the three cases entering the previous table: All
particle species, exclusion of pions with T0 = 183 MeV at
γs = 1 and T0 = 183.5 MeV at γs = 1, respectively. Ta-
ble 4 summarizes the adjustment of the thermodynamical
parameters according to the χ2-fit (along with the esti-
mate for χ2/dof) for each of the three aforementioned
cases. Finally, Table 5 presents particle ratios (used only
for the case where all the multiplicities are included),
taken with respect to negative hadron population which

5 To ensure that the χ2-estimate is carried out without leav-
ing the domain of analyticity of the SSBM the numerical values
in Table 1 correspond to T0 = 190 MeV for γs = 1.

Table 5. Particle ratios from the experimentally measured full
phase space multiplicities for the S + Ag interaction used in the
analysis with h−

Particle ratios for Experimental
the fit with h− values

K0
s /h− 0.0833 ± 0.0095

Λ/h− 0.0817 ± 0.0081
Λ/h− 0.0140 ± 0.0018
p/h− 0.0108 ± 0.0043

p − p/h− 0.231 ± 0.021
B − B/h− 0.484 ± 0.061
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has the smallest experimental uncertainty (see [8] for a
relevant comment).

A pictorial representation of the results with physical
significance is given in Figs. 9–12. In the first of these fig-
ures we display bands, per particle ratio, in the (µu, T )-
plane with γs fixed at 0.67 (see Table 4). These bands
are determined by the experimental uncertainty per ratio.
The bold solid line marks the boundary of the hadronic
world, beyond which the SSBM does not present analytic
solutions. All particle ratios are used (as per Table 5), i.e.
pions have not been excluded in the plot. No overlap re-
gion of the various bands is observed, nevertheless we have
marked with a cross the center of a region of “optimum
overlap” which lies inside the hadronic world.

Figure 10 considers corresponding bands of particle
populations. Since the variable V T 3/4π3 also enters our
considerations we fix it according to its adjusted value of
1.23 (see second column of Table 4). It should be pointed
out that the upper limit for the experimental K0

s pop-
ulation (17) as well as the whole band of the negative
hadron population (175–197) correspond to fitted values
for the thermodynamical parameters that are outside the
hadronic domain (bold solid line). The dotted line marks
the smallest value of χ2 on the boundary surface. We have
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Table 1. The fitted parameters and the χ2/dof values for different fits through SSBM in the
experimentally measured full phase space multiplicities in the S + Ag interaction. In the first fit
all the multiplicities are included while in the following fits we exclude each time one mutiplicity.
T0 is set to 190 MeV

Excluded T (MeV) λu λd λs γs V T 3/4π3 χ2/dof

none 170.943 1.540 1.582 1.088 0.662 2.883 10.35/3
Ks

0 162.411 1.551 1.588 1.132 0.749 3.869 4.72/2
Λ 170.363 1.523 1.563 1.093 0.616 3.063 9.41/2
Λ 158.361 1.625 1.665 1.174 0.636 4.239 7.58/2
p 175.180 1.482 1.520 1.067 0.596 2.807 4.55/2

p − p 170.626 1.538 1.579 1.090 0.665 2.904 10.33/2
B − B 172.040 1.554 1.597 1.083 0.656 2.786 8.52/2

h− 180.779 1.642 1.702 1.011 0.839 1.261 1.64/2

Table 2. Experimentally measured full phase space multiplicities in the S + Ag
interaction and their theoretically fitted values by the SSBM, with the inclusion
of the h− multiplicity and without it (cases A: T0 = 182.94 MeV and B: T0 =
183.5 MeV)

Particles Experimental Calculated Calculated Calculated
data with h− without h− without h−

(Case A) (Case B)
Ks

0 15.5 ± 1.5 17.613 15.181 15.155
Λ 15.2 ± 1.2 14.490 15.424 15.429
Λ 2.6 ± 0.3 2.3998 2.5502 2.5538
p 2.0 ± 0.8 3.4614 2.3612 2.3547

p − p 43 ± 3 42.600 40.931 40.937
B − B 90 ± 10 101.39 99.307 99.325

h− 186 ± 11 170.68a 128.85b 128.57c

a A correction factor 1.0236 has been included for the effect of Bose statistics.
b A correction factor 1.0190 has been included for the effect of Bose statistics.
This multiplicity is not included in the fit.
c A correction factor 1.0188 has been included for the effect of Bose statistics.
This multiplicity is not included in the fit

Table 3. Calculation of the correction factor fi = [(NIHG–BF)i−
(NIHG–BO)i] /(NIHG–BO)i for the ith particle species measured in 4π phase
space in the S + Ag interaction. For the calculation of fi the IHG formalism has
been used, while the thermodynamical variables have been extracted from the
SSBM fit with h− and without h− (cases A and B)

Particles (i) fi (%) for the fi (%) for the fi (%) for the
fit with h− fit without h− (A) fit without h− (B)

Ks
0 0.462 0.641 0.645

Λ 0.053 0.232 0.237
Λ −0.142 −0.410 −0.418
p 0.146 0.105 0.105

p − p −0.388 −0.431 −0.432
B − B −0.434 −0.417 −0.417

h− 2.357 1.897 1.877
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Table 4. Results of the analysis by SSBM of the experimental data from the S + Ag
interaction (4π phase space), with the inclusion of the h− multiplicity and without
it (cases A and B)

Fitted Fitted with h− Fitted without h− Fitted without h−

parameters (Case A) (Case B)
T (MeV) 170.6 ± 5.9 176.3 176.8 ± 2.1

λu 1.544 ± 0.046 1.640 1.641 ± 0.074
λd 1.586 ± 0.050 1.700 1.701 ± 0.084
λs 1.084 ± 0.036 1.012 1.011 ± 0.047
γs 0.670 ± 0.073 0.836 0.84 ± 0.12

V T 3/4π3 2.74 ± 0.71 1.23 1.22 ± 0.60
χ2/dof 9.37 / 3 1.654 / 2e 1.652 / 2

µu (MeV) 74.1 ± 5.7 87.3 87.6 ± 8.0
µd (MeV) 78.7 ± 6.0 93.5 93.9 ± 8.8
µs (MeV) 13.8 ± 5.7 2.2 2.0 ± 8.1
PINSIDE 100% (128/128) 48.44% (31/64) −

e It is the minimum of χ2 within the hadron gas with T0 = 183 MeV (for γs = 1),
not the absolute minimum
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s = 17, h− = 175 and h− = 197 lie outside
the hadronic domain, as set by the SSBM

determined that 51.6% of particle multiplicities are com-
patible with a source outside the hadronic domain. A zoom
around the vicinity of the minimal χ2-value on the critical
surface is presented in Fig. 11.

A comparison between measured and theoretically de-
termined (according to our χ2-fit) multiplicities is sum-
marized in Fig. 12. Experimental points, with error bars,
are represented by heavy dots. Theoretically determined
points are marked according to the three cases studied
throughout, i.e. all particle species inclusion and exclu-
sion of pions with T0 set, respectively, at 183 MeV and
183.5 MeV for γs = 1. Once again we notice a dramatic
improvement of the fits when pions (h−) are excluded.
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Fig. 11. The same diagram as Fig. 10, but with an enlarge-
ment of a smaller area to show the common overlapping re-
gion (shaded area) within the hadronic phase which is com-
patible with all the measured multiplicities, except h−. The
lines which correspond to Λ = 16.4, Λ̄ = 2.9, p̄ = 1.2, p̄ = 2.8
and p−p̄ = 46 are outside the region of the diagram and enclose
the shaded region

As we have argued in [8], this occurrence seems to signify
an excess of pion production, incompatible with a pure
hadronic phase (SSBM/experimental = 0.69 ± 0.04).

4 Conclusions

In this work we have applied the SSBM to analyze ex-
perimental data from the S + Ag collision at 200 GeV per
nucleon pertaining to produced particle multiplicities (4π
projection) recorded by the NA35 collaboration at CERN.
The quintessential aspect of the model is that it accom-
modates interactions in a self-consistent way within the
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framework of a thermal description of the (relativistic)
multiparticle system. Moreover, it designates a precicely
defined boundary for its applicability, a feature which plays
a central role in the assessment of our results. It should fi-
nally be recalled that for the construction of this bounbary
we have chosen the largest possible, physically meaningful
values of T0(B) so as to enlarge the hadron gas domain
and avoid over-optimistic interpretations, regarding the
location of the source with respect to this boundary.

Our primary objective has been to locate the source
of the multiparticle system in the space of the relevant
thermodynamical set of parameters. In this connection,
we have found that the data point towards a thermal
source that lies just outside the hadronic phase. The sit-
uation is not as pronounced as in the previously analysed
case of S + S collisions [8] at 200 GeV per nucleon, where
a much larger weight in favor of the source being out-
side the hadronic boundaries was determined. The overall

situation resulting from our data analyses (p + p̄, S + S,
S + Ag) is depicted in Fig. 13. One notices the proximity
of the source location for the two nucleus–nucleus colli-
sion process just beyond the hadron phase as well as the
(expected) placement of the source for the p + p̄ collision
well inside the hadronic domain.

The experimental data give a substantial excess of pion
(entropy) production compared to theoretical predictions.
This strongly hints that the source of the emerging multi-
particle system from the S + Ag collision is in the doorway
of the QGP phase. As already pointed out in the Introduc-
tion, an estimate of the entropy associated with the pionic
component of the produced system for the S + S collision
gives [8] a theoretical to experimental ratio which is not
compatible with hadronic physics and necessitates a loca-
tion of the source outside the hadronic domain. A similar
behavior persists in the present case as well.

A final result of interest was the observation of a ten-
dency towards strangeness saturation. This indicates that
the source has achieved almost full thermal and chemical
equilibrium, as expected and required for a phase transi-
tion to QGP.

We thus conclude that in the S + S and S + Ag in-
teractions at 200 GeV/nucleon we have witnessed for the
first time the appearance of definite signals linking these
interactions with the QGP phase.

The fully extended SSBM is now in a position to con-
front multiparticle data emerging from any A+A collision
experiment, including strange particles. In this respect,
the methodology can be applied to other ongoing experi-
ments, e.g. Pb + Pb, as data become available and, more
importantly, on the future ones from RHIC and LHC.
On the theoretical side, it would be extremely interest-
ing to connect a scheme such as the SSBM coming from
the hadronic side to corresponding microscopic-oriented
accounts of QGP physics [21].

Appendix A

We shall show that the critical temperature value T0 as
defined in the text corresponds to its maximum value on
the critical surface.

We start by re-expressing (20) in the form

T = f({λ}, γs), (29)

where we ignore critical value indications on each variable
for notational simplicity.

A maximum for T corresponds to an extremum

∂f({λ}, γs)
∂λi

∣∣∣∣
ϕ

= 0, i = 1, . . . , 4. (30)

As long as one remains on the critical surface the above
condition can be easily transcribed to

∂f({λ}, γs)
∂λi

∣∣∣∣
ϕ

= −∂ϕ/∂λi

∂ϕ/∂T

= −λi∂ϕ/∂λi

λi∂ϕ/∂T
, i = 1, . . . , 4, (31)
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and since λi∂ϕ/∂T 6= 0 it must be the case that

λi
∂ϕ

∂λi
= 0, i = 1, . . . , 4. (32)

Now, for the hadronic fugacities we may write

λa = c1 + λb{λ}γNsa
s , (33)

where λb, c1 and Nsa can be read from (17) and (18). (For
examble, in the case of the Λ Baryons we have c1 = 0,
λb = λuλdλs and Nsa = 1.) Therefore,

λi
∂λa

∂λi
= Niaλb{λ}γNsa

s , i = 1, 2, 3, (34)

and
λi

∂λa

∂λi
= Nsaλb{λ}γNsa

s , i = 4. (35)

Given the above set of equations there will be a corre-
sponding family of antiparticles for which

λi
∂λa

∂λi
= −Niaλb{λ}−1γNsa

s , i = 1, 2, 3, (36)

and
λi

∂λa

∂λi
= Nsaλb{λ}−1γNsa

s , i = 4 (37)

will hold true.
The last four equations applied to (32) give∑

a

(λb{λ} − λb{λ}−1)Niaγ
Nsa
s Fa(V, T ) = 0,

i = 1, 2, 3, (38)

∑
a

(λb{λ} + λb{λ}−1)Nsaγ
Nsa
s Fa(V, T ) = 0,

i = 4, (39)

where the index “a” runs solely over particles. Next we
see that (39) could not possibly hold true because the left
part is always positive (the numbers Nsa are physical).
Therefore an extremum of the temperature with respect
to γs does not exist. Turning to (38) we observe that a
solution could be found if for all {λ} we had

λb{λ} − λb{λ}−1 = 0, ∀b

⇔
λb{λ} = 1, ∀b. (40)

An obvious solution for (40) is

λu = λd = λs = 1 ⇔ µu = µd = µs = 1. (41)

The last equation defines an extremum for the critical tem-
perature with constant γs.

On the other hand we have

∂

∂λj

(
λi

∂ϕ

∂λi

)
=

1
λj

∑
a

(λb{λ}

+λb{λ}−1)NiaNjaγ
Nsa
s Fa(V, T ) > 0,

i = 1, 2, 3. (42)

That is, for every value of i = 1, 2, 3 each one of the above
equations, once two values among the {λ} are fixed, will
have a unique solution. That happens, because from (42),
one can infer that λi∂ϕ/∂λi is a genuine increasing func-
tion with respect to λj and so it has a unique solution.
By extension the simultaneous solution of the three equa-
tions will be unique. So the extremum we have calculated
is unique. This extremum cannot correspond to a mini-
mum, since the critical surface has a zero critical temper-
ature for non-zero chemical potentials (e.g. see Figs. 1 and
3). Since always T ≥ 0, if the point which corresponds to
(41) was a local minimum, then we should have another
extremum somewhere else, which is imposible, since the
extremum is unique. Therefore (41) corresponds to a total
maximum for a given value of γs.

Appendix B

In our study we have to calculate r constraints (r = 1 for
isospin symmetry and r = 2 for isospin non-symmetry)
and different particle multiplicities as functions of the ther-
modynamical variables (T, {λ}). In general, all these quan-
tities can be written as

Rj(T, {λ}) ≡
∫ T

0

1
y5

Qj(y, {λ})
2 − exp[G(y, {λ})]

dy, (43)

where

Rj ≡ Hj , j ≤ r, Rj ≡ N theory
j−r , j > r, (44)

where H and N theory are given from (23) and (27), respec-
tively, and

Qj ≡ Fj , j ≤ r,

Qj ≡ V T 3

4π3H0

[
∂ϕ(y, {λ}, · · · , λj−r, · · ·)

∂λj−r

]∣∣∣∣
···=λj−r=···=1

,

j > r, (45)

with Fj given from (24) and (25).
In order to evaluate the optimized set of variables

(T, {λ}) in our large working space we have to turn to
the use of the generalized Newton–Raphson method which
converges quickly but requires knowledge of the deriva-
tives of (43). If we try to calculate these derivatives with
respect to a fugacity λi from (43) we find

∂Rj(T, {λ})
∂λi

∣∣∣∣
T

=∫ T

0

dy

y5

{
exp[G(y, {λ})]

{2 − exp[G(y, {λ})]}3

∂ϕ(y, {λ})
∂λi

Qj(y, {λ})

+
1

2 − exp[G(y, {λ})]
∂Qj(y, {λ})

∂λi

}
. (46)

With the use of the above equation the Newton–
Raphson method can proceed for all points of the hadronic
space which are not close to the critical surface. Prob-
lems, however, are encountered when the quantities (46)
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have to be evaluated near and even more on the critia-
cal surface. When T → Tcr the function to be integrated
in (46) contains a non-integrable singularity of the form
(2−exp[G])−3. This singularity cannot be integrated even
if we use the variable z = 2 − exp[G(y, {λ})], as we did in
[7,8].

On the other hand the quantities Rj can be expressed
as functions of a new set of variables. This new set can
be formed if we replace the temperature T in favor of the
function ϕ, or equivalently the z variable. Then the Rj

can be given from

Rj(z, {λ}) =
∫ z̃

1

dz̃

z̃ − 2
(47)

×
[
Qj(y, {λ})

y5 · ∂ϕ(y, {λ})
∂y

]
z̃=2−exp[G(y,{λ})]

.

To be able to proceed with the Newton–Raphson method,
in this case, we calculate instead of (43), the derivatives of
Rj when z is constant, i.e. derivatives of the form
(∂Rj(z, {λ}))/(∂λi)|z. These derivatives should not
present any singularity for any value of z (even for z = 0
when we are on the critical surface) because, as can be
seen from (48), the Rj can be evaluated for any values of
z and {λ}.

In order to proceed with the evaluation of the deriva-
tives of (48) we can assume that we are standing on a
surface of constant ϕ or, equivalently, of constant z. We
then let the variation to the fugacity λi be dλi without
ever leaving the above mentioned surface. Then the vari-
ation in z is

dz =
dz

dλi
dλi = 0. (48)

Since we are using the BE we have

dG

dϕ
=

1
2 − eG

, (49)

and we arrive at

dz

dλi
=

dz

dG

dG

dϕ

∂ϕ

∂λi

∣∣∣∣
z

=
−eG

2 − eG

∂ϕ

∂λi

∣∣∣∣
z

. (50)

From the last two equations we conclude that

∂ϕ(z, {λ})
∂λi

∣∣∣∣
z

= 0. (51)

Let us comment that on the critical surface 2− eG = 0, so
again (51) is to hold if (48) and (50) are to be fulfilled. If we
then express the z variable as function of the temperature
y and the fugacities, z = z(y, {λ}), then (51) leads to

∂ϕ(y, {λ})
∂y

· ∂y

∂λi

∣∣∣∣
z

+
∂ϕ(y, {λ})

∂λi
= 0

⇒ ∂y

∂λi

∣∣∣∣
z

= −∂ϕ/∂λi

∂ϕ/∂y
. (52)

The last relation shows us how temperature is varied with
the fugacity λi on a surface of constant z.

Using the definition

Vj(y, {λ}) ≡ Qj(y, {λ})

y5 · ∂ϕ(y,{λ})
∂y

, (53)

the derivatives we seek can be expressed as

∂Rj(z, {λ})
∂λi

∣∣∣∣
z

=
∫ z

1

dz̃

z̃ − 2
·
[
∂Vj [y(z̃, {λ}), {λ}]

∂λi

]
. (54)

But

∂Vj [y(z̃, {λ}), {λ}]
∂λi

=
∂Vj [y, {λ}]

∂y

∂y

∂λi

∣∣∣∣
z

+
∂Vj [y, {λ}]

∂λi

=

[(
y5 ∂ϕ

∂y

)−1
∂Qj

∂y
− 5

y6

(
∂ϕ

∂y

)−1

Qj

− Qj

y5

(
∂ϕ

∂y

)−2
∂2ϕ

∂y2

]
·
(

−∂ϕ/∂λi

∂ϕ/y

)

+
(

y5 ∂ϕ

∂y

)−1
∂Qj

∂λi
− Qj

y5

(
∂ϕ

∂y

)−2
∂2ϕ

∂y∂λi

= y−5
(

∂ϕ

∂y

)−2 [
∂ϕ

∂y

∂Qj

∂λi
− ∂ϕ

∂λi

∂Qj

∂y

+ Qj

(
− ∂2ϕ

∂y∂λi
+

∂2ϕ

∂y2

∂ϕ/∂λi

∂ϕ/∂y
+

5
y

∂ϕ

∂λi

)]
. (55)

From the last two equations we conclude that

∂Rj(z, {λ})
∂λi

∣∣∣∣
z

=

∫ z

1

dz̃

z̃ − 2

{
y−5

(
∂ϕ

∂y

)−2 [
∂ϕ

∂y

∂Qj

∂λi
− ∂ϕ

∂λi

∂Qj

∂y

+ Qj

(
− ∂2ϕ

∂y∂λi
+

∂2ϕ

∂y2

∂ϕ/∂λi

∂ϕ/∂y

+
5
y

∂ϕ

∂λi

)]}
z̃=2−exp[G(y,{λ})]

. (56)

As is known the function to be z-integrated does not
have such a good behavior near z = 1. So it is better to
break the above integral in two parts:

∂Rj(z, {λ})
∂λi

∣∣∣∣
z

=
∫ T1

0

dy

2 − eG
y−5

(
∂ϕ

∂y

)−1

×
[
∂ϕ

∂y

∂Qj

∂λi
− ∂ϕ

∂λi

∂Qj

∂y

+ Qj

(
− ∂2ϕ

∂y∂λi
+

∂2ϕ

∂y2

∂ϕ/∂λi

∂ϕ/∂y
+

5
y

∂ϕ

∂λi

)]

+
∫ z

z1

dz̃

z̃ − 2

{
y−5

(
∂ϕ

∂y

)−2 [
∂ϕ

∂y

∂Qj

∂λi
− ∂ϕ

∂λi

∂Qj

∂y

+ Qj

(
− ∂2ϕ

∂y∂λi
+

∂2ϕ

∂y2

∂ϕ/∂λi

∂ϕ/∂y

+
5
y

∂ϕ

∂λi

)]}
z̃=2−exp[G(y,{λ})]

. (57)
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In the above relation z1 = 2− exp[G(T1, {λ})] and a good
choice is z1 = 0.5. If z > 0.5 we are not close to the
critical surface and the second integral does not have to
be calculated. So in general we can set z1 = max{z, 0.5}.

The derivatives of Rj with respect to z can be calcu-
lated easily. They simply read

∂Rj(z, {λ})
∂z

∣∣∣∣
λi

=
1

z − 2
· y−5

×
{

∂ϕ[y(z, {λ}), {λ}]
∂y

}−1

Qj [y(z, {λ}), {λ}]. (58)

With the above relations the minimization of the χ2

function can proceed with the use of the Newton–Raphson
method. Relation (58) can also be used to find out whether
the absolute minimum of χ2 is outside or inside the crit-
ical surface. Suppose we locate the minimum value of
χ2 = (χ2)1 on the critical surface and this value corre-
sponds to the point (z, {λ}) = (0, {λ0}). Then the abso-
lute minimum of χ2 is located inside the hadronic phase
if for this point we have

∂χ2(z, {λ0})
∂z

∣∣∣∣
z=0

< 0. (59)

If the above relation is not fulfilled the absolute minimum
of χ2 lies on the outside.

An alternative method to verify the same thing con-
sists of locating the minimum value of χ2 on a surface near
the critical one inside the hadronic phase. Let this value
be (χ2)2. The absolute minimum of χ2 is located inside
the hadronic phase if (χ2)2 < (χ2)1 and outside other-
wise. For the two fits we have performed for S + Ag we
had to process 192 points. All these points have given us
the same results with the use of the two methods.
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2. J. Sollfrank, M. Gaździcki, U. Heinz, J. Rafelski, Z. Phys.

C 61, 659 (1994)
3. A.D. Panagiotou, G. Mavromanolakis, J. Tzoulis, Phys.

Rev. C 53, 1353 (1996)
4. F. Becattini, U. Heinz, Z. Phys. C 76, 269 (1997)
5. F. Becattini, M. Gaździcki, J. Sollfrank, Eur. Phys. J. C

5, 143 (1998)
6. A.S. Kapoyannis, C.N. Ktorides, A.D. Panagiotou, J.

Phys. G23, 1921 (1997)
7. A.S. Kapoyannis, C.N. Ktorides, A.D. Panagiotou, Phys.

Rev. D 58, 034009 (1998)
8. A.S. Kapoyannis, C.N. Ktorides, A.D. Panagiotou, Phys.

Rev. C 58, 2879 (1998)
9. R. Hagedorn, Nuovo Cimento Suppl. III, 147 (1965)

10. R. Hagedorn, J. Ranft, Nuovo Cimento Suppl. VI, 169
(1968); R. Hagedorn, Nuovo Cimento Suppl. VI, 311
(1968)

11. R. Hagedorn, Nuovo Cimento LVI A, 1027 (1968)
12. R. Hagedorn, Springer Lecture Notes in Physics, 221,

edited by K. Kajantie (Berlin, Heidelberg 1985) p. 53; R.
Hagedorn, 1995 Hot Hadronic Matter, NATO-ASI-Series
B 346 edited by J. Letessier et al., p. 13; R. Hagedorn,
I. Montvay, J. Rafelski, Hadronic Matter at Extreme En-
ergy Density, edited by N. Cabbibo, L. Sertorio (Plenum
Press, New York 1980), 49

13. R. Hagedorn, J. Rafelski, Phys. Lett. B 97, 136 (1980)
14. F. Becattini, J. Phys. G23, 1933 (1997)
15. J. Sollfrank, J. Phys. G23, 1903 (1997)
16. J. Baechler et al., NA35 Coll., Eur. Phys. J. C 2, 643

(1998)
17. J. Baechler et al., NA35 Coll., Phys. Rev. Lett. 72, 1419

(1994)
18. T. Alber et al., NA35 Coll., Z. Phys. C 64, 195 (1994)
19. T. Alber et al., NA35 Coll., Phys. Lett. B 366, 56 (1996)
20. D. Rohrich et al., NA35 Coll., Nucl. Phys. A 566, 35c

(1994)
21. D. Bailin, A. Love, Phys. Rep. 107, 325 (1984); T. Schafer,

Phys. Rev. D 57, 3950 (1998); M. Alford, K. Rajagopal,
F. Wilczek, Phys. Lett. B 422, 247 (1998); T. Schafer, F.
Wilczek, hep-ph/9810509; J. Berges, K. Rajagopal, Nucl.
Phys. B 538, 215 (1999)


